225+144=c^2

Simple and best practice solution for 225+144=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 225+144=c^2 equation:



225+144=c^2
We move all terms to the left:
225+144-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+369=0
a = -1; b = 0; c = +369;
Δ = b2-4ac
Δ = 02-4·(-1)·369
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{41}}{2*-1}=\frac{0-6\sqrt{41}}{-2} =-\frac{6\sqrt{41}}{-2} =-\frac{3\sqrt{41}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{41}}{2*-1}=\frac{0+6\sqrt{41}}{-2} =\frac{6\sqrt{41}}{-2} =\frac{3\sqrt{41}}{-1} $

See similar equations:

| 5=y/4-6 | | x3=215. | | 8x+20=2x+50 | | 1/x=6/7 | | 2x-5=-6x+35 | | (2x+1)+47=90 | | y+5+3y=4y-4 | | 2x=46,x | | 8=d+32/7 | | 8x-0=196 | | 3​(x+1​)=3​(x+6​) | | 10|x|=2.5 | | 2x=46,x= | | 8x+20=2×+50 | | 1/4+1/2x=-3/4 | | n-42=15 | | 5(u+1)-u=4(u-1)=9 | | 4÷3=x+10/15 | | 33+3x=6-24x | | 7+x)1/2=22 | | 1.66x+0.166=0.05 | | 5(x-8)=-50 | | f-9=27 | | 180=71+2x-21 | | 8x-1=196 | | 5x-7x-13=-2x+9-13 | | 3/5(15x+10)=85.29 | | 6+x4=24 | | -6+8−3x+13x= | | 2k−36=−2k+16 | | 6r+6=84 | | y+2.4=2 |

Equations solver categories